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ABSTRACT

Sunspots are intense regions of magnetic flux that are rooted deep below the photosphere. It is well

established that sunspots host magnetohydrodynamic waves, with numerous observations showing a

connection to the internal acoustic (or p-)modes of the Sun. The p-modes are fast waves below the

equipartition layer and are thought to undergo a double mode conversion as they propagate upwards

into the atmosphere of sunspots, which can generate Alfvénic modes in the upper atmosphere. We

employ 2.5D magnetohydrodynamics (MHD) numerical simulations to investigate the adiabatic wave

propagation and examine the resulting power spectra of coronal Alfvénic waves. A broadband wave

source is used that has a 1D power spectrum which mimics aspects of the observed p-mode power

spectrum. We examine magnetoacoustic wave propagation and mode conversion from the photosphere

to the corona. Frequency filtering of the upwardly propagating acoustic waves is a natural consequence

of a gravitationally stratified atmosphere, and plays a key role in shaping the power spectra of mode

converted waves. We demonstrate that the slow, fast magnetoacoustic waves and Alfvén waves above

the equipartition layer have similarly shaped power spectra, which are modified versions of the driver

spectrum. Notably, the results reveal that the coronal wave power spectra have a peak at a higher

frequency than that of the underlying p-mode driver. This matches observations of coronal Alfvénic

waves and further supports the role of mode conversion process as a mechanism for Alfvénic wave

generation in the Sun’s atmosphere.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) waves are considered

to play a key role in the transfer of energy through the

Sun’s atmosphere (Osterbrock et al. 1961; Jess et al.

2015; Nakariakov & Kolotkov 2020; Van Doorsselaere

et al. 2020), carrying energy from the convective mo-

tions in the photosphere out into the corona and be-

yond. In an inhomogeneous plasma, such as the Sun’s

atmosphere, a variety of magnetohydrodynamic (MHD)

wave modes can exist beyond the traditional slow, fast

and Alfvén modes (Spruit 1982; Edwin & Roberts 1983).

Inhomogeneity perpendicular to the magnetic field leads

to MHD waves having mixed properties (Goossens et al.

2019). As such, a variety of modes can be considered

Alfvénic in nature (Goossens et al. 2009). Their char-

acteristic incompressibility indicate that the Alfvénic

waves play a crucial role in transporting energy through
the solar atmosphere (e.g., Morton et al. 2023).

Alfvénic modes are generally considered to be driven

by the buffeting of magnetic fields in the photosphere

(e.g., Cranmer & van Ballegooijen 2005). However,

global observations of coronal Doppler velocities suggest

Alfvénic waves have an enhanced power around 4 mHz

(Morton et al. 2019), which is not expected from convec-

tive driving. It has been suggested that the enhanced

power can be linked with the peak of the p-mode power

spectrum in the photosphere, which lies at ∼ 3 mHz

(e.g., Hansen & Cally 2012). The close proximity of the

peaks in frequency space has been taken as evidence that

the coronal Alfvénic waves are somehow influenced by

the p-modes.

Previous studies have demonstrated the possibility of

converting acoustic modes to Alfvén waves (via con-

version to and from the fast magnetoacoustic mode,
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e.g., Cally & Goossens 2008; Khomenko & Cally 2012;

Felipe 2012). A number of other studies have also

implemented a broadband p-mode driver in order to

excite coronal Alfvénic waves. For instance, Kuniyoshi

et al. (2024) used 2D simulations to demonstrate high-

frequency transverse spicule oscillations driven by p-

modes, although the underlying mechanism exciting

these oscillations remains unclear. Gao et al. (2023)

utilize a 3D model of a closed magnetic loop and excite

waves with a mono-periodic p-mode driver. There is

certainly the possibility of linear mode conversion in

such simulations, but their focus is on the generation of

standing waves. Skirvin et al. (2023) investigated the

mechanism for exciting transverse Alfvénic waves using

an inclined p-mode wave driver, which breaks symme-

try and utilises pressure to displace the magnetic field.

However, this study did not explicitly address mode

conversion. Related work by Skirvin & Van Doorsse-

laere (2024) explored the role of transverse structuring

in mode conversion within the lower solar atmosphere.

Despite such studies, it has not yet been demonstrated

that enhancements in coronal power spectra can arise

from p-mode excitation of Alfvénic waves.

The p-modes are the pressure perturbations trapped

below the photosphere (Sakurai 2017) and are absorbed

by regions of high magnetic fields, such as sunspots

or magnetic bright points associated with the network

regions in the quiet Sun. Due to the abundant mag-

netic field, the p-modes are funnelled as magnetoacous-

tic waves into the solar atmosphere (Spruit et al. 1992;

Cally & Bogdan 1997). The p-modes are predominantly

acoustic in nature and are subject to the acoustic cut-

off frequency. The frequency of the cutoff arising in a

gravitationally stratified plasma is (from a WKB ap-

proximation) given by

νac =
γg

4πcs
, (1)

where cs is the sound speed, γ is the ratio of spe-

cific heats, and g is gravity (Landgraf 1997; Jiménez

et al. 2011; Khomenko & Cally 2011). Acoustic (fast)

modes in a high-beta plasma (i.e., in the low photo-

sphere and solar interior) propagate isotropically, hence

are little influenced by the magnetic field. Although

when the Alfvén speed, vA, and sound speed are com-

parable (cs ≈ vA), then the magnetic field can influence

wave propagation (Cally 2006).

In a low-beta plasma (cs < vA) the acoustic waves

are the slow modes and are field-guided. Hence the cut-

off frequency is modified by effective gravity along the

inclined flux tubes as the slow magnetoacoustic waves

have a preferred path of propagation dictated by the

inclined magnetic field (e.g., Schunker & Cally 2006).

The effective cut-off is

νac,eff = νac cos θ,

here the cosine of the inclination angle, θ, is defined

with respect to the local vertical. The influence of the

effective acoustic cut-off on the slow modes is thought to

be the basis of well known phenomena associated with

sunspot oscillations. One is that sunspot’s umbrae show

a power spectra dominated by oscillations with frequen-

cies of ∼ 3 mHz in the photosphere but is dominated

by ∼ 5 mHz oscillations in the chromosphere (see, e.g.,

Bogdan & Judge 2006; Centeno et al. 2006; Felipe et al.

2010). Moreover, the variation of peak oscillatory power

with inclination has also been reported in the observa-

tions of sunspot’s penumbral chromosphere. The fre-

quency of slow magnetoacoustic waves with the largest

power decreases with distance from the spot centre (Jess

et al. 2013; Jess & Verth 2016; Morton et al. 2021).

Cally & Goossens (2008) first discussed mode conver-

sion as a mechanism for producing Alfvén waves from

p-modes. They demonstrated that Alfvén waves can

be generated by the mode conversion of fast magnetoa-

coustic waves when the magnetic field is inclined with

respect to the plane of wave propagation. Motivated

by these studies, Khomenko & Cally (2011, 2012) em-

ployed 2.5D numerical simulations in sunspot-like re-

gions to understand the efficiency of conversion from

p-modes to Alfvén waves. The p-modes are fast acous-

tic waves below the equipartition layer (the layer where

cs = vA). The fast acoustic waves largely enter the low-

beta atmosphere as fast magnetic waves, with mode con-

version changing their character from acoustic to mag-

netic. However, around the equipartition layer, the fast

acoustic waves can also be transmitted as slow magne-

toacoustic modes for a narrow range of magnetic field

inclinations (e.g., Cally 2006; Schunker & Cally 2006).

The fast magnetoacoustic waves then undergo signifi-

cant reflection due to the rapidly increasing Alfvén speed

in the upper atmosphere at the locations where their

horizontal phase speed matches the local Alfvén speed

i.e. ω/kh = vA, where ω is the angular frequency and

kh is the horizontal wavenumber (Cally & Hansen 2011).

The fast-to-Alfvén conversion coefficient is then predom-

inantly based on the horizontal wave number (kh), mag-

netic field inclination (θ) from the stratification direc-

tion, and the azimuthal angle (ϕ) of the wave vector with

respect to the plane containing the stratification and

magnetic field directions (Cally & Hansen 2011). Hence

there is effectively a double mode conversion in getting

from acoustic to Alfvén waves. The extent of acoustic to

Alfvén conversion is largely influenced by the magnetic
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field inclination and azimuth angles around the equipar-

tition layer (Cally & Goossens 2008; Khomenko & Cally

2012). Cally & Goossens (2008) reported that magnetic

field inclinations between 30◦ − 40◦ and azimuth angles

between 60◦ − 80◦ at the equipartition layer favour the

double mode conversion, and the resultant Alfvén fluxes

are significantly higher than the acoustic fluxes.

Given the nature of MHD wave propagation in the

lower solar atmosphere, how then might the observed en-

hancement of coronal Alfvénic wave power occur? And

why is the peak at a frequency of 4 mHz while the p-

modes peak around 3.3 mHz? We suggest the shape of

the coronal Alfvénic power spectrum could be defined

by the atmospheric filtering of the p-mode power spec-

trum. The acoustic cut-off frequency is able to modify

the acoustic power spectrum through a frequency filter-

ing of the upwardly propagating acoustic modes.

If we consider the acoustic spectrum at the equipar-

tition layer, the effect of the cut-off will be to skew the

peak of the power to higher frequencies than that of

the p-mode spectrum, as the lower frequencies are trun-

cated. The mode conversions from fast (acoustic) to

fast (magnetic) and fast (magnetic) to Alfvén are linear;

hence there is no change in wave frequency. As such, one

should also expect the power spectra of fast and Alfvén

modes, generated by mode conversion from upwardly

propagating acoustic modes, to have a peak frequency

higher that of the p-modes. The frequency filtering will

depend on the height of the equipartition layer. The cut-

off frequency varies as a function of height in the solar

atmosphere, having its largest value at the temperature

minimum. If the equipartition layer occurs below the

temperature minimum along a nearly vertical field line

as in a sunspot umbra, then the peak frequency of the

fast and Alfvén mode spectra will likely be lower than

that of the slow modes. This is because the slow mode

is continuosly influenced by the effect of the cut-off af-

ter propagating past the equipartition layer and there is

further reflection due to the transition region.

In the following, we examine the role the acoustic cut-

off on MHD wave propagation with numerical simula-

tions. Previous work on the fast-to-Alfvén mode conver-

sion focused efforts on understanding the fundamentals

of the process, generally opting to use monochromatic

wave drivers for clarity (Khomenko & Cally 2011, 2012).

A non-monochromatic driver was used by Felipe et al.

(2010), but their simulations did not reach the corona

and the power spectra of the Alfvénic waves did not ap-

pear to be of interest. As such, there has not been an

investigation into what aspects of the p-mode spectrum

are imparted upon the coronal Alfvénic waves. Hence,

the main objective of this work is to examine the na-

ture of the coronal Alfvénic wave power spectrum when

the system is driven by a broadband driver that resem-

bles the p-modes. We employ a modified version of the

sunspot model used in the previous studies of Khomenko

& Cally (2011, 2012) and extend the atmosphere into the

transition region and corona. Acoustic modes are driven

with a broadband driver and we investigate the adia-

batic wave propagation, examining the resulting power

spectra of coronal Alfvén waves.

2. NUMERICAL SETUP

2.1. Numerical Scheme

Following Khomenko & Cally (2011, 2012), we use

the MANCHA code to solve the non-linear equations

for perturbations where the equilibrium state is re-

moved from the equations (see Khomenko & Collados

2006, 2008; Felipe et al. 2010; Modestov et al. 2024,

for more details on MANCHA). The system of MHD

equations to be solved are written in conservative form,

namely,

∂ρ

∂t
+∇ · (ρv) = 0, (2)

∂(ρv)

∂t
+∇ ·

[
ρvv +

(
p+

B2

2µ0

)
I− BB

µ0

]
= ρg, (3)

(4)

∂B

∂t
= ∇×(v ×B) (5)

where I is the Identity tensor and E represents the total

energy and is expressed as

E =
1

2
ρv2 +

p

γ − 1
+

B2

2µ0
. (6)

Here, ρ is the density, v is the velocity, p is the gas

pressure, B is the magnetic field, µ0 the magnetic per-

meability, g is the gravitational acceleration. We also

employ an ideal equation of state for which γ = 5/3.

The MHD equations are solved with spatial and tem-

poral discretisations that are centered, fourth-order ac-

curate, explicit finite differences scheme (Vögler et al.

2005) and fourth order Runge-Kutta scheme respec-

tively (Khomenko & Collados 2006; Modestov et al.

2024). Following Khomenko & Cally (2012), we use a

2.5D approximation to solve the equations, which allows

for vectors in three spatial directions, but the derivatives

are taken only in two directions (one vertical and one

horizontal). Hence the perturbations only propagate in

the XZ plane.
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Figure 1. Topology of the expanded sunspot solution that includes transition region and corona. Following Khomenko &
Collados (2008), their equations 6 and 7, the model is constructed using the following parameters: a = 2h, h = 3 Mm,
B0 = 20000 G, z0 = 1 Mm, and η = 3.5. White lines are magnetic field lines. Dashed lines with labels are the contours of the
ratio of the sound speed and the Alfvén speed squared, (c2s/v

2
A).

2.2. Magneto-static Sunspot Model

To generate the background atmosphere upon which

the wave propagation occurs, we choose to sample a 2D

slice from a 3D atmosphere. For this purpose, we employ

a sunspot model that closely resembles the one discussed

in Khomenko & Collados (2008). The sunspot domain

is a thick flux tube which is azimuthally symmetric with

no twist. It is a current distributed model which has the

radial variations of field strength and gas pressure con-

tinuous across the spot, and it is constructed by merging

a self-similar solution by Low (1980) in the deep layers

with the model of Pizzo (1986) in the atmospheric lay-

ers. There is no sharp transition between the umbra and

penumbra or between the penumbra and the field-free

photosphere. The magnetic field inclination of the field

lines changes gradually from the sunspot axis outward

(see Figure 1). At the spot centre, (X,Y ) = (0, 0) Mm,

the magnetic field is 2200 G below the photosphere and

gradually decreases with height. Readers are referred

to Khomenko & Collados (2008) for details on the con-

struction of the sunspot model.

There are a number of modifications between our

model and that of Khomenko & Collados (2008). One

adaption is that we elect to use the FAL-C model

(Fontenla et al. 1993) as our quiet Sun boundary (be-

tween 0.7 Mm and 2.2 Mm in height), which describes

the upper photosphere and solar chromosphere (FAL-
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Figure 2. Background atmosphere taken at Y=7 Mm (from the Y-origin at the spot centre). The left panels in the top and
bottom are the temperature and magnetic field variations of the background atmospheric conditions, respectively. The white
contours with arrows are the in-plane projections of the background magnetic field lines and the near-horizontal curve across
the domain is the equipartition layer where cs/vA = 1. The top right panel shows the plasma properties as a function of height
at the centre of the domain (corresponding to the vertical dashed line in the left panels). Similarly, the bottom right panel is
the variation of sound and Alfvén speeds as a function of height at the centre of the domain.

C is more consistent with the observed hydrogen and

helium spectra than VAL-C; Fontenla et al. 1993).

In order to include a corona in the simulation domain,

we choose to extend the atmosphere until 8 Mm above

the photosphere. The upper 2 Mm of the domain are

reserved for accommodating the boundary conditions at

the top of the simulation domain. To extend the atmo-

sphere of the quiet Sun, we first interpolate the temper-

ature profile using a polynomial function that begins at

2.2 Mm and attains a constant temperature by 5.5 Mm.

We extend the atmosphere of the spot centre likewise.

Next, we calculate pressure and density assuming hy-

drostatic equilibrium as described in Santamaria et al.

(2015). First, the pressure scale height is calculated as,

Hp =
RgasT

gµvar
, (7)

which is used in the solution for the following hydrostatic

equilibrium for pressure

dp(z)

dz
+

p

Hp
= 0. (8)

Finally, we recover the density distribution from equa-

tions (7) and (8) using

ρ =
p

gHp
. (9)

Here, p is the pressure, ρ is the density, Rgas is the

gas constant, and T is the temperature, z is the height.

We expect a varying degree of ionisation of plasma with

height. The mean atomic weight (µvar) is approximately

0.5 in a single fluid hydrogen-only plasma. Hence, the

value of µvar is smoothly decreased until it reaches 0.5

in the corona for both spot centre and quiet sun. We

achieve this extrapolation past 2.2 Mm using an expo-

nential function:

µvar = 0.5 + eκ(zi−z) (10)

where, κ is a scaling factor or sometimes referred to as

steepness parameter, zi is the initial height at which we

begin the extrapolation. Hence, we extrapolate 1D at-

mospheric profiles past 2.2 Mm respectively, for both
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quiet sun and spot centre. Once these models are es-

tablished, smooth transition between them for the gas

pressure and scale height distributions is achieved and

the force balance equation along the magnetic field lines

is iterated until a convergence criterion is reached (Pizzo

1986; Khomenko & Collados 2008).

Figure 1 displays the atmosphere at the centre of the

sunspot (Y = 0) cropped from -2 Mm to 5 Mm in Z-

direction and from 0 Mm to 38 Mm in the radial direc-

tion for visualization purposes. Figure 1 clearly shows

the variations across the domain in both vertical and

radial directions. The umbral and penumbral region in

the model can be differentiated based on the inclinations

of magnetic field lines.

For our 2.5D simulation, we use a vertical slice (XZ

plane) located at a distance of 7 Mm away from the

centre of the sunspot in the Y-direction. The domain

is also restricted to 14.2 Mm in X (and is 10 Mm in

Z direction). The magnetic structure of magnetostatic

solution is shown in the bottom left panel of Figure 2,

which is a plot of magnetic field strength with in-plane

projections of the background magnetic field lines for

the sunspot on an extended vertical scale of 10 Mm (i.e.

[-2,8] Mm). The temperature of the background atmo-

sphere is shown in the top left panel of Figure 2. An

example of the 1D plasma profiles from the model can

be observed in the right panels of Figure 2, located at

(X,Y ) = (0, 7) Mm (location indicated by the the ver-

tical dashed line in the left panels of the Figure 2). The

spatial resolution across the domain is uniform, and is

set to 50 km in the horizontal X-direction and 20 km in

the vertical Z-direction.

2.3. Diffusion Profile and Boundary Conditions

For the model boundary conditions in the horizontal

direction, we follow MacBride et al. (2022). We use

periodic boundary conditions on either side on our sim-

ulation domain by reflecting the model horizontally and

then shifting the model by half the original width such

that the original domain remains in the center of the X-

axis. The numerical domain is large enough such that

we do not see wave entering back from the outer edges.

Despite having our driver exciting perturbations with

small amplitudes, they undergo appreciable amplifica-

tion with height due to stratification. In order to reduce

reflections from the top boundary layer, we introduce

a layer of diffusion on the top boundary above 4 Mm

until 8 Mm. The diffusion profile is constructed using a

sigmoid function given by,

D = 1/(1 + eκ(z−zc)). (11)

Figure 3. 2D and 1D plots of the diffusion profile. The
dotted lines indicate the height at which the sigmoid is cen-
tred (zc). The dashed lines indicate the height we consider
to compute the Alfvén power spectrum.

Here, κ is a scaling factor, z is the height, zc is the height

at which the sigmoid is centered. From Figure 3 it can

be seen that the sigmoid starts after 4 Mm and is centred

at around 6 Mm. We use the 2D diffusion profile dis-

cussed above as a mask which multiplies time-constant

part of the diffusion coefficient (proportional to the sum

of the flow speeds and the grid spacing in each Carte-

sian direction). The final diffusion coefficient, different

for each equation and direction, is formed by the sum

of the time-constant part, hyperdiffusion and shock dif-

fusion contributions, computed as explained in section

3.4 in Modestov et al. (2024). The diffusion coefficients

then enter into the computations of the viscosity ten-

sor, Ohmic diffusion, their corresponding counterparts

in the energy equation, as well an an artificial term in

the continuity equation that does not have a physical

counter-part. For more details, the reader is referred to

Modestov et al. (2024).

Additionally, PML with a sponge layer (SPML), is ap-

plied to the upper part of the model from 6 Mm until

8 Mm (100 grid points) as part of the boundary con-

ditions (Modestov et al. 2024). PML has proved to be

an excellent wave absorber and has been employed in

many previous works (Khomenko & Collados 2008; Fe-

lipe et al. 2010; Khomenko & Cally 2012; MacBride et al.

2022). As the Alfvén and sound speeds increase drasti-

cally with height in the corona, waves with large ampli-

tudes develop in our simulation.

2.4. Broadband Driver

We employ a broadband driver designed to mimic as-

pects of the observed p-mode spectrum (which is shown

in Figure 4). The feature of interest is the distinct peak

at 3 mHz. The p-modes with frequencies much lower
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Figure 4. The frequency dependence of the wave driver. A
comparison of the broadband driver (blue dots) used in the
simulation with the observed p-mode power spectrum (red
solid) from SOHO MDI (Rhodes et al. 1997). The black line
is the average trend fitted to the observed p-mode power
spectrum.

than this value are always evanescent in the atmosphere,

so likely do not contribute to the flux of coronal Alfvén

waves. Further, given that the mode conversion process

is linear, we expect a one-to-one mapping between the

p-mode frequencies and those of the coronal Alfvénic

waves. Hence, we also do not attempt to simulate the

high-frequency regime here. To describe our driver,

we use a Gaussian function centered at Pc = 320 s

(νc ≈ 3 mHz to model the velocity amplitude in fre-

quency space, i.e.,

Vn = v0 exp

(
−1

2

(
νn − νc

σν

)2
)
. (12)

Here, v0 = 2 × 10−4 m/s and σν is the standard devi-

ation of the Gaussian. The shape of the driver power

spectrum is shown as the blue curve in Figure 4. For the

driver, we consider 200 sinusoidal perturbations, with

periods (Pn = 1/fn) uniformly spaced between 100 -

600 seconds, with the amplitude for each sinusoid given

by Eq. 12.

The driver is confined vertically to a few grid points

close to the domain’s bottom boundary (Z= -2 Mm -

1.25 Mm and at X=0 Mm). The form of the perturba-

tions is determined analytically as an acoustic-gravity

wave (see Mihalas & Mihalas 1986; Khomenko & Cally

2012), ignoring the magnetic field and temperature gra-

dient. The ratio of sound-to-Alfvén speeds squared in

the driving region is c2s/v
2
A ≈ 250. Hence, we can expect

the magnetic field to be dynamically unimportant and

mainly acoustic modes to be excited by the driver. In ac-

cordance with Mihalas & Mihalas (1986), self-consistent

perturbations of the velocity vector, pressure, and den-

sity are given by:

δVz =

200∑
n=1

Vn g(x) exp
( z

2H
+ kziz

)
× sin(ωnt− kzrz +Φn) (13)

δp

p0
=

200∑
n=1

Vn|Pn| g(x) exp
( z

2H
+ kziz

)
× sin(ωnt− kzrz + ϕPn

+Φn) (14)

δρ

ρ0
=

200∑
n=1

Vn|Rn| g(x) exp
( z

2H
+ kziz

)
× sin(ωnt− kzrz + ϕRn

+Φn).(15)

Here, H is the density scale height, kzr and kzi are real

and imaginary vertical wave numbers, and Φn is a ran-

dom phase added to the wave at each of the 200 fre-

quencies. The subscript 0 refers to quantities related

to the unperturbed background atmosphere. The X-

dependence of the pulse, denoted g(x), is defined by:

g(x) = exp

(
−1

2

(
x− x0

σx

)2
)
, (16)

where σx defines the size of the pulse in X-direction, x0

is the location where the Gaussian is centred and x is the

horizontal coordinate. We choose σx = 1.25 Mm. Using

a spatially localised pulse excites modes with different

horizontal wavenumbers, with mode amplitude decreas-

ing as the absolute value of the wave number increases

(Khomenko & Collados 2006).

The amplitudes and the relative phase shifts between

the perturbations are given by,

|Pn| =
γ

ωin

√
k2zr +

(
kzi +

1

2H

(γ − 2)

γ

)2

, (17)

|Rn| =
1

ωin

√
k2zr +

(
kzi −

1

2H

)2

, (18)

|ϕPn | = arctan

(
kzi
kzr

+
1

2Hkzr

(γ − 2)

γ

)
, (19)

|ϕRn
| = arctan

(
kzi
kzr

− 1

2Hkzr

)
. (20)

Given the wave angular frequency, the vertical

wavenumber is found from the dispersion relation for

acoustic-gravity waves in an isothermal atmosphere as

kz = kzr + ikzi =
√
(ω2

n − ω2
ac)/c

2
s (21)

where ωac = 2πνac is the acoustic cutoff frequency.
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Figure 5. Left: Velocity projections of slow (left), fast (middle) and Alfvén (right) waves at snapshot 1163 seconds. The green
contour is the equipartition layer. The vertical dashed line is where the θ = 30◦ and ϕ = 56◦ at the equipartition layer. The
velocities are scaled by a factor of

√
ρ0cs on the left panel and

√
ρ0vA for the middle and right panels.

Figure 6. Time evolution of velocity projections of slow (left), fast (middle) and Alfvén (right) waves for a column of the
simulation. The location in the domain is shown by the vertical line in Figure 5. The inclination angle and the azimuthal
angles are (θ, ϕ) = (30◦, 56◦) at the equipartition layer. The plots in the second row are similar but zoomed to a vertical range
of -1 Mm to 1 Mm for better clarity. The solid line is the equipartition layer and the region between the two dashed lines
corresponds to the the fast wave reflection region. The dotted line is the the fast wave reflection region which is estimated by
taking period Pn = Pc. All the velocity projections are scaled by a factor of

√
ρ0cs on the left panel and

√
ρ0vA for the middle

and right panels.

3. RESULTS

Upon providing the background atmosphere and the

driver, MANCHA is then used to solve the perturbations

of density, pressure, magnetic field, and velocities of the

system of MHD equations (Eqs. 2-6). Given that the

mode conversions of interest are linear in nature, we

keep the initial perturbations of the system small (refer

Eqn. 12) to ensure the waves remain in the linear regime.

We now discuss the results of the simulation in detail.

3.1. MHD Wave projections

To differentiate the Alfvén modes from the fast and

slow magnetoacoustic modes in the magnetically domi-

nated atmosphere (vA > cs), we use the following pro-

jections onto three characteristic directions:

êlong =[cosϕ sin θ, sinϕ sin θ, cos θ] (22)

êperp=[− cosϕ sin2 θ sinϕ, 1− sin2 θ sin2 ϕ,

− cos θ sin θ sinϕ] (23)

êtrans=[− cos θ, 0, cosϕ sin θ]. (24)
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Here θ is the inclination of the magnetic field with re-

spect to the vertical and ϕ is the azimuthal angle. The

slow (long) projection is the radial unit vector along

the magnetic field. The Alfvén (perp) projection is

the asymptotic polarization direction perpendicular to

the magnetic field as suggested by Cally & Goossens

(2008). The fast (trans) component is the cross prod-

uct of slow and Alfvén projections. These projections

have been demonstrated to be rather effective in sepa-

rating the perturbations related to all three modes (Fe-

lipe et al. 2010; Khomenko & Cally 2011). Note that

below the equipartition layer (cs > vA), the longitudi-

nal and transverse components will contain a mixture of

fast and slow perturbations, as the fast mode propagates

isotropically.

An example of applying the wave projections to the

velocity perturbations is shown in Figure 5. For visual-

isation, the long projection is scaled by
√
ρ0cs and the

trans and perp projections are scaled by
√
ρ0vA. The

scalings correspond to the respective wave energy fluxes,

Fw = ρ⟨v2⟩vph. (25)

Here ⟨v2⟩ is the root mean square of velocity ampli-

tudes and vph is the phase speed. The magnitudes of

the quantities in Figures 5, 6 are then the square root of

the kinetic energy flux. As the amplitude increases with

height and density drops accordingly, the scaling factor√
ρ0vph allows for efficient visualisation of the respec-

tive velocity projections along different layers, reducing

the effects of wave amplification with height due to the

variation in plasma parameters.

3.2. Wave behaviour

Figures 5 and 6 demonstrate that the wave behaviour

in the simulation is complex. However, the results for

the lower solar atmosphere are comparable to the nu-

merical results from the 3D simulations of Felipe et al.

(2010); Khomenko & Cally (2012). From Figure 6, it is

clear that both slow magnetoacoustic and Alfvén modes

are able to propagate into the corona. The upward

propagation of MHD waves from the lower solar atmo-

sphere into the corona has been demonstrated in a num-

ber of previous numerical simulations, e.g., slow modes

(Hansteen et al. 2002; Botha et al. 2011) and Alfvén

modes (Khomenko & Cally 2019). In contrast, there is

little signature of the fast mode energy present. This

is because the fast mode suffers significant reflection in

a region above the equipartition layer, which is clearly

observed in the middle panel of Figure 5. Above this re-

gion, the modes are evanescent in the corona (e.g., Holl-

weg 1978; Leroy & Schwartz 1982; Schwartz & Leroy

1982).

3.2.1. Acoustic modes

Throughout the atmosphere, the acoustic modes are

subject to reflections. For slow magnetoacoustic waves

in a strongly magnetised environment (cs < vA), there

are then two sources of wave reflection present, the grav-

itational stratification and also from regions with signifi-

cant gradients in the pressure scale height ( e.g., Roberts

2006; Botha et al. 2011). Figure 8 displays the cut-off

frequency arising from gravitational stratification (given

by Eq. 1) and it varies across the domain, peaking at

∼ 4.5 mHz. In the current model, slow waves with fre-

quencies less than ∼ 4 mHz should be reflected before

they reach the equipartition layer.

Figure 5 shows a number of locations where there is

substantial wave reflection due to strong gradients in the

pressure scale height (Hp), see Figures 1 and 2 for sound

speed profiles. These are visible as the horizontal stripes

across the domain, notably at a height of ∼ 2 Mm in the

slow projection. We expect this boundary to form a res-

onance cavity in the lower atmosphere, with the poten-

tial for standing modes to exist (e.g., Zhugzhda 2007,

2008; Botha et al. 2011; Felipe et al. 2020). Another

horizontal stripe at 6 Mm marks where the PML bound-

ary conditions start and the diffusion profile reaches a

value half its maximum (see Figure 3). This combination

of factors leads to an artificial reflection point. Above

6 Mm the waves are damped rapidly showing the effec-

tiveness of the combined PML and artificial diffusion.

It is insightful to examine how the waves evolve with

time in the system. Figure 6 shows the velocity projec-

tions for a single column of the simulation (its location

in the domain at X= 4.55 Mm, marked by the vertical

dashed lines in Figure 5). For this column, the mag-

netic field inclination has values (θ, ϕ)=(30◦, 56◦) at the

equipartition layer. It can be seen that the excited fast

acoustic waves propagate upwards and are either split

into slow magnetoacoustic waves or mode converted to

fast magnetoacoustic waves at the equipartition layer

(indicated by the solid line running across all six pan-

els). In the left panels of Figure 6, the propagating slow

waves above the equipartition layer experience strong re-

flection from the locations with steep temperature gra-

dients of the transition region. This feature was not seen

in the simulations of Khomenko & Cally (2012), but is

similar to 2D simulations of Santamaria et al. (2015).

The returning slow magneto acoustic mode should then

also be able to mode convert or be transmitted as they

pass back through the equipartition layer.

The upwardly travelling slow waves then propagate

quickly through the coronal part of the simulation due

to the increased sound speed. The slow waves suffer
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reflection around 6 Mm due the onset of the diffusion

profile and PML layers. This leads to a variable flux

of downward propagating slow modes, indicated by the

varying slopes in the time-distance diagram of the lon-

gitudinal velocity component.

3.2.2. Transverse modes

In the middle panels of Figures 5 and 6, the fast mag-

netoacoustic wave is chosen by the orthogonal projection

êtrans above the equiparition layer, but it is a mixture of

wave modes below the equipartition layer. The enhance-

ment of the transverse component about the equiparti-

tion is dominated by downward propagating, reflected

modes (Figure 6 middle panels). The reflection of fast

magnetoacoustic waves back into the lower atmosphere

occurs up to around 2 Mm above the equipartition layer.

The region of wave reflection will differ for modes with

different ω and kh. In Figure 6 we indicate the reflec-

tion region for a wave with kh = 1.07 Mm−1 (equivalent

to full-width half-maximum of driver pulse). The lower

dashed line refers to the height where ω = 2π/Pn, for

Pn = 100 seconds and the upper dashed line refers to

the region where Pn = 600 seconds. The dotted line

refers to the region where Pn = Pc, i.e. 320 s where the

driver is centred. As the fast to fast conversion is linear,

the fast magnetoacoustic modes generated in this sim-

ulation should be reflected strongly below 1 Mm. This

is clearly seen in the time-distance plots. The observed

pattern of reflection is comparable to that observed in

previous simulations (e.g., Felipe et al. 2010; Khomenko

& Cally 2012). As mentioned, very little fast magne-

toacoustic (or transverse) energy is able to reach the

corona.

Due to the presence of multiple wave frequencies and

reflection of slow and Alfvén waves from the transition

region, the pattern below ∼ −1 Mm is more complicated

than previous simulations. This is because the mode

conversion is possible between all modes in this region

(Cally 2021). Although interesting, we do not attempt

to disentangle the relationships between the reflected

waves.

3.2.3. Alfvén modes

The Alfvén waves are separated by the projection

êperp from Eq. (23). Given the strong reflection of the

transverse wave modes observed within Figure 6, it can

be expected that some of the fast wave energy is con-

verted to upwardly propagating Alfvén waves, hence

the occurrence of the perpendicular component in the

corona (e.g., also found in the simulations of Felipe et al.

2010; Khomenko & Cally 2012). The Alfvén waves are

reflected throughout the simulation due to gradients in

the Alfvén speed (e.g., Hollweg et al. 1978; Schwartz

et al. 1984), and some of the wave energy is reflected

back towards the photosphere. The steepest gradients

in Alfvén speed occur at the transition region (see, Fig-

ures 1 and 2). The reflected Alfvén waves leave a sig-

nificant signature of downward propagation in the right

panels of Figure 6. This reflection reduces the amount of

Alfvén wave energy able to reach the upper part of sim-

ulation (compared to the results of Khomenko & Cally

2012).

Hence, irrespective of the wave types, the transition

region acts as a partial barrier to all the upward propa-

gating waves within this simulation. It has been shown

that transverse structuring can aid the transmission of

waves to the corona (Khomenko & Cally 2019; Skirvin

& Van Doorsselaere 2024), although there is a sugges-

tion that the rate of expansion of the magnetic field in

the lower atmosphere is the dominant influence on wave

energy flux through the transition region (at least for

Alfvén waves; Taroyan & Borradaile 2024). Here, the

sunspot is best described as a thick flux tube model

that rapidly expands in the lower atmosphere and this

leads to strong reflection.

3.3. Coronal Power Spectra

To determine the coronal power spectra of different

waves modes, we take the Fourier transform of the in-

dividual time series at each grid point for each veloc-

ity projection. The time-series used are taken across

the sunspot domain at the height of Z = 4 Mm. The

squared absolute value of the Fourier coefficients is taken

and averaged across all time-series to obtain the aver-

age power spectra across the sunspot. The averaging

across the sunspot will somewhat mimic line-of-sight in-

tegration through the corona at the limb, incorporating

the wave behaviour across magnetic fields with various

inclination angles.

Figure 7 shows the coronal power spectra of fast, slow

and Alfvén waves. In addition to these curves, we also

show the power spectrum of velocity projection vz, av-

eraged across the width of the driving pulse (σx) at the

height of Z = −1.65 Mm. It can be seen that the coronal

power spectra for all the wave modes have an enhanced

power which is clearly located at different frequency

from that of the driver (with dominant driving frequency

at ≈ 3 mHz). Fitting a Gaussian function to the power

enhancement for the Alfvén waves reveals the peak oc-

curs at a frequency of∼ 4 mHz. The frequency is compa-

rable to that estimated from the coronal Doppler veloc-

ity fluctuations associated with Alfvénic waves (Morton

et al. 2019). We note that the high-frequency peaks in

the coronal power spectra between 10-50 mHz are caused
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Figure 7. Coronal power spectrum for the MHD wave modes. The figure on the left shows average power spectra for slow,
Alfvén and fast velocity projections, indicated by the the orange, blue and green curves, respectively. For all modes, the coronal
Alfvén power spectrum peaks around 4.5 mHz, with the frequency indicated by the vertical black dotted line. The red dashed
curve is the averaged power spectrum of velocity projection vz at the location of the driver. The peak frequency of the driver
is shown by the vertical black dashed line. The figure on the right is the normalised average power spectra for slow, Alfvén
projections.

by the spurious excitation of waves due to the reflection

from the periodic boundaries.

As discussed in the introduction, this phenomenon

arises due to frequency filtering effects present for

magneto-acoustic wave propagation. The upward prop-

agating acoustic modes are subject to frequency depen-

dent reflection below the equipartition layer, leading to a

filtering. The characteristics of the acoustic wave power

spectra are then passed on to the other wave modes

during the linear mode conversion processes. This is in-

dicated by the fact that all the coronal power spectra

display an enhancement of power in the same frequency

range (and have similarly shaped power spectra).

For the current simulation, the coronal slow modes

have substantially greater power than the coronal Alfvén

modes. Although, as discussed, there is a nonphysical

reflection of the coronal slow waves due to the numeri-

cal implementation which means the magnitude of the

power difference between slow and Alfvén modes is likely

inflated. The transverse waves have a factor of ∼ 105

less power than the Alfvén waves, which is expected due

to the near total reflection of fast modes.

4. CONCLUSION AND DISCUSSION

It is well established that the coronal Alfvénic power

spectrum has an enhancement around 4 mHz (Tomczyk

et al. 2007; Morton et al. 2019), and the underlying

cause behind the enhanced power at this frequency range

has been the subject of debate. Previous work has sug-

gested that p-modes (which have a peak power of around

3 mHz) could be responsible, mode converting first to

fast magnetic waves then to Alfvén waves, (e.g., Cally &

Hansen 2011; Hansen & Cally 2012; Khomenko & Cally

2012; Cally 2016). Here, we demonstrate by direct nu-

merical simulation that the enhancement of the coronal

Alfvénic power spectrum can be directly connected to

the internal acoustic oscillations.

As discussed in the introduction, the temperature

structure of the lower solar atmosphere is a natural filter

for the upward propagating acoustic waves, truncating

the power spectra for low frequencies (ν < νac). The

subsequent mode conversions, i.e., fast to fast, and fast

to Alfvén, are linear so the filtered power spectrum of

the p-modes is imparted on the resultant transformed

wave modes. This is clearly seen in the simulations

when measuring the coronal power spectrum for all wave

modes. The peak of the coronal power spectrum will

depend upon the location of equipartition layer with re-

spect to the temperature minimum (where the highest

value frequency cutoff occurs). In the current model, the

equipartition layer is close to, but below, the tempera-

ture minimum, hence the upwardly propagating waves

are subject to nearly the maximal filtering. Should the

equiparition layer be lower, then the filtering of the p-

mode spectrum would be less and the Alfvénic power

spectrum would likely peak at a lower frequency.

The slow magnetoacoustic modes continue to feel the

effect of cutoff above the equipartition layer, and should

be more strongly filtered. This is seen when compar-

ing the normalised coronal power spectrum for the slow

and Alfvén waves (Figure 7 right panel), where the slow

waves have less power at lower frequencies. The mag-

netic field inclination (θ) will also play a role in shaping

the coronal wave power spectrum as it further modifies
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Figure 8. Cutoff frequency across the background condition. White contours refer to the magnetic field lines. Vertical white
dashdot line refers to the slit we considered to achieve the results in Figure 6. The solid black line across the domain is the
equipartition layer (cs = vA). The dashed and dotted lines refer to the cutoff layers where vac = 4 mHz and 3 mHz respectively.
We clipped the regions within the yellow dashed rectangular box to achieve the plot on right for better visualization purposes.

the cutoff frequency. This will essentially only effect the

slow modes though.

We note that in the current simulation, there is a lim-

ited range of magnetic field inclination angles (30◦ < θ <

40◦). The range of angles is particularly suited to the

fast-to-Alfvén conversion. Further simulations are re-

quired that incorporate a broader selection of magnetic

field inclinations (both θ and ϕ) to see whether the peak

from the average coronal power spectra still occurs at

4 mHz. We speculate that this will be the case as the

coronal Alfvén spectrum is shaped by the filtering of the

fast acoustic modes below the equipartition layer, which

is largely independent of inclination.

The results from the sunspot should also be represen-

tative of wave dynamics in network fields in the quiet

Sun. The foreseeable difference is the relative heights of

the equipartition layer and the temperature minimum.

In network elements the equipartition layer is likely to

occur above the temperature minimum (e.g., see atmo-

spheric structure of network element in Khomenko et al.

2008), although this will depend upon the magnetic field

strength. This might introduce additional filtering of

the fast acoustic modes before they are converted to

fast magnetoacoustic modes. However, the minimum

plasma temperature in network elements is likely greater

than that in the sunspots (potentially be up to 1000 K

more based on 1D semi-empirical models of sunspots and

network elements). This means the frequency filtering

could be less severe and may not extend to frequencies

of 5 mHz. Further simulations would be required to

confirm this.

It is worth highlighting that we derive an averaged

coronal Alfvén power spectrum at 4 Mm above the pho-

tosphere, far below the heights at which CoMP has

previously made measurements. We believe that the

spectrum would remain largely unchanged as the waves

propagate higher in the corona. These Alfvén waves are

subject to amplification with height due to the drop in

density with height and observations suggest they re-

main linear. Furthermore, observations indicate there is

weak Alfvénic wave damping in the quiet Sun (Tiwari

et al. 2021) and coronal holes (Morton et al. 2015) from

frequency-dependent mechanisms such as resonant ab-

sorption and phase mixing. Hence, we expect the over-

all shape of the power spectrum to remain largely un-

changed.
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